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Kinetics of XY and Ising ordering in a time-dependent Ginzburg-Landau model
with O „2…3Z2 ground-state degeneracy
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We investigate numerically the ordering dynamics of a time-dependent Ginzburg-Landau~TDGL! model in
two dimensions, which possesses a ground-state manifold with O(2)3Z2 degeneracy. The ordering process of
the system is described in terms of annihilation of both point defects~vortices! and line defects~domain walls!,
together with the mutual pinning between the two kinds of defects. There exist two regimes~regimes I and II!
of parameter space with different growth kinetics. In regime I, Ising order shows a power law growth with
exponentf I.0.48, butXY order grows with smaller exponent offXY.0.38, while in regime II both Ising
andXY order exhibit an effective growth exponent off I;fXY.0.38. In regime II, the system exhibits a very
slow approach to the asymptotic scaling regime. This distinction between the two regimes is attributed to the
different nature of the symmetry of the Ising order parameter.@S1063-651X~97!07811-2#

PACS number~s!: 64.60.Cn, 64.60.Ht, 64.60.My, 82.20.Mj
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I. INTRODUCTION

There has been a long history of research activity on
phase ordering processes for statistical systems quen
from disordered phase to a low temperature ordered ph
@1#. It is now fairly well established that the equal-time co
relation functions at the late time stage exhibit scaling pr
erties with typical size of the ordered regions growing a
power law in time, and that the growth law and the scal
functions depend on the dimensionality of the system, nu
ber of the order parameter components, and the conserve
nonconserved nature of the order parameter@2#. For systems
with O(N) symmetry, when the dimensionality of the syste
is not less than the number of components of the order
rameterN, stable topological defect structures such as
main walls, vortices, strings, and monopoles are gener
and the ordering dynamics of the system is known to
closely related to the decay process of these defects w
act as disordering agents@3–7#.

Most of the research in this area has focused on syst
with a single kind of topological defect structure, and t
phase ordering kinetics in systems in which two or mo
types of topological defects coexist and interact with ea
other was almost never explored. The two-dimensional
sephson junction array under a transverse magnetic field@8#,
discotic liquid crystals@9#, and helimagnetic compounds@10#
provide some physical examples of such systems.

Recently, the present authors@11# have performed nu-
merical simulations on the ordering dynamics of the fu
frustratedXY ~FFXY! model on a square lattice@12# which
possesses both continuous O~2! and discreteZ2 degeneracies
in its ground-state manifold. This model is known to d
scribe the equilibrium properties of Josephson junction
rays in two dimensions with half magnetic flux quantum p
unit plaquette@8#. This work indicated that the ordering dy
namics of the model quenched from infinite temperature
low temperature exhibits a rich variety of behaviors such
561063-651X/97/56~6!/6362~8!/$10.00
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temperature-dependent ordering, a characteristic low t
perature chiral domain morphology with faceted walls, an
finite temperature roughening transition separating the
different kinds of domain growth morphology@13#.

In the present work, we investigate the ordering kinet
of a continuum time-dependent Ginzburg-Landau~TDGL!
model, in two dimensions with O(2)3Z2 degeneracy, which
is closely related to the FFXY model on a square lattice. Th
aim of the present work is to understand the effect of co
istence of both continuous and discrete broken symm
~and interaction between the corresponding defect structu!
on the ordering kinetics of the systems governed by the c
tinuum TDGL models. The Ginzburg-Landau Hamiltonia
can be derived from the FFXY model in two dimensions
through a Hubbard-Stratonovich transformation as the ef
tive free energy of the system at finite temperature@14#. It
can also be constructed in terms of two planar vector fie
by symmetry arguments@15#. It is shown below that, de-
pending on the values of the coupling constants, there e
two characteristic regimes~regime I and regime II! with dif-
ferent growth kinetics. This is due to the existence of tw
types of Ising order parameters possible for the model.
regime I, the Ising order parameter can be identified as
inner product of the two planar vectors, while in regime
the Ising order parameter corresponds to the difference
tween the squared amplitude of the two planar vector fie

The main results of the present work are summarized
follows. The most important feature of the growth kinetics
the continuum TDGL model with O(2)3Z2 broken symme-
try is that, for both regime I and regime II, the vortices a
pinned near the Ising domain walls. This mutual pinni
between vortices and domain walls is expected to influe
the dynamic decay rate of the number of defects themsel
thus giving rise to nontrivial domain growth laws. Esp
cially, the screening of vortex fields due to the domain wa
appears to influence the equal-time correlation functions
the XY and Ising order parameters and their scaling fu
6362 © 1997 The American Physical Society
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56 6363KINETICS OF XY AND ISING ORDERING IN A . . .
tions in an interesting way. In the case of regime I, Isi
order grows with approximate domain length scale ofLI
;tf I with f I.0.48 which is quite close to the doma
growth in the scalar TDGL model with nonconserved ord
parameter. However, the length scale corresponding toXY
order grows in time as a power law withLXY(t);tfXY,
wherefXY.0.38, which is distinctly smaller than the pu
XY growth exponent reported from various numerical sim
lations @16–19#.

On the other hand, in the case of regime II, the Ising a
XY order grow with nearly the same growth law ofLXY(t)
;LI(t);t0.38. This growth exponent, however, should b
considered as only an effective growth exponent, beca
there exists a tendency of slow increase in the growth ex
nent with time. One interesting feature in regime II is that t
Ising correlation function exhibits a very slow approach
the asymptotic limit. We attribute this to the high density
soft vortices pinned near the Ising domain walls. These v
tices will be smearing the domain walls, making it difficu
for the width of the domain walls to reach their equilibriu
size. Hence, within our simulation time window, the effe
tive Ising scaling function exhibits a singular behavior
F(x)512Axx with x.1.4 near the origin, apparently vio
lating Porod’s law for the Ising order@2#. Time dependence
of the vortex density and energy relaxation behavior are c
sistent with this picture of a broad Ising domain wall, ve
slowly approaching its equilibrium width as the orderin
proceeds.

As for the autocorrelation function for theXY order pa-
rameter, for both regimes, it exhibits a stretched exponen
behavior ofAXY(t);exp(2ctb) with b.0.2. This peculiar
behavior is reminiscent of theXY autocorrelation function in
the one-dimensional~1D! O~2! model@20#, though with dif-
ferent values of theb exponent@b51/2 in the 1D O~2!
model#.

This paper is organized as follows. In Sec. II we pres
the Hamiltonian of the model, the symmetry, the groun
state configurations, and the associated Langevin dyna
equation. Section III explains the results of numerical sim
lations. Section IV summarizes the main results of
present work.

II. TDGL MODELS WITH O „N…3Z2 GROUND-STATE
DEGENERACY

We begin with a Ginzburg-Landau Hamiltonian based
two N-component real vectorsfW 1 andfW 2 of the form

H5E ddr F1

2
@~¹W fW 1!21~¹W fW 2!2#1

1

4
~fW 1

21fW 2
221!2

1
g

2
~fW 1•fW 2!21

h

2
fW 1

2fW 2
2G . ~1!

This Hamiltonian withN52 was derived by Choi and Doni
ach@14# through a Hubbard-Stratonovich transformation a
by Yosefin and Domany@15# through a symmetry argumen
in connection with efforts to understand the critical prop
ties of the two-dimensional FFXY model. Let us first discuss
the symmetry of the above Hamiltonian and the lowest
ergy configurations. In order to obtain the minimum ener
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configurations, it is enough to consider the spatially const
solution that satisfies the extremum condition for the pot
tial term, i.e.,

dV

dfW a
U

fW 5fW min

50, a51,2 ~2!

where

V5
1

4
~fW 1

21fW 2
221!21

g

2
~fW 1•fW 2!21

h

2
fW 1

2fW 2
2 . ~3!

It can be shown from Eqs.~2! and ~3! that there exist, in
general, two different regimes in the (g,h) plane. These two
regimes are characterized by different ground-state confi
rations and correspondingly by different definition of Isin
order parameters. The underlying reason for the existenc
two different Ising order parameters lies in the full symme
structure of the HamiltonianH. Namely, the Hamiltonian~1!
is invariant under~i! a global~simultaneous! rotation of two
vector fields @O(N)#, ~ii ! the exchange of the two field
(Z2

a), and ~iii ! the sign change~p rotation! of one of the
fields (Z2

b), where the superscriptsa and b serve to distin-
guish the two discreteZ2 symmetries. Hence the Hamil
tonian has O(N)3Z2

a3Z2
b symmetry. Among this full sym-

metry of the Hamiltonian, only O(N)3Z2 subsymmetry is
broken in the ground state and depending on which one
the two Z2 symmetries~Z2

a or Z2
b! is broken, two types of

Ising order parameters are allowed. The two regimes are
scribed in order.

Regime I: For22,g1h,0 andg,0, the ground-state
configuration is obtained when the two fieldsfW 1 and fW 2
become parallel or antiparallel with the same amplitudeA
51/Ag1h12, which yields the ground-state energyEg
5(g1h)/@4(g1h12)#. Therefore the proper Ising orde
parameter in this regime can be defined as

x~rW,t !5@fW 1~rW,t !•fW 2~rW,t !#/A2. ~4!

Note that the two degenerate~parallel and antiparallel!
ground-state manifolds can never be reached from each o
by a global rotation of the two fields simultaneously. With
one vacuum manifold, a global rotation of an arbitrary an
of the two fields generates another ground-state config
tion, representing O(N) degeneracy of the system. In add
tion, changing the sign of one of the two fields transform
one ground-state manifold into the other manifold with o
posite Ising order parameter value. An arbitrary ground-s
configuration is thus a symmetry broken state for both
these continuous and discrete symmetries, namely, ON)
3Z2

b symmetry.
Regime II: Forg.0 andh.0 the ground-state configu

rations are given by either one of the fields becoming a u
vector and the other field zero. That is, the relative amplitu
of the two vectors determines the Ising order paramete
the model, which is defined as

x~rW,t !5@fW 1~rW,t !#22@fW 2~rW,t !#2. ~5!

Again, in this regime, there exist two disconnected sets~by
global rotations of the fields! of ground-state manifolds
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which is connected by exchange of the two fieldsfW 1 andfW 2

(Z2
a). Therefore, as in regime I, the ground state posse

O(N)3Z2
a degeneracies. But note that the nature of the d

creteZ2 symmetry for the two regimes is different: For r
gime I, this symmetry corresponds to changing the sign
one of the two fields whereas for regime II, it corresponds
exchange of two fields.

For the special case ofN52, which we will be focusing
on in this work, in addition to the above two regimes, the
appears an apparently new regime for22,h,0 andg.0
where the two disconnected sets of ground-state config
tions correspond to the perpendicular alignment of the
vector fields~clockwise or counterclockwise! with the same
amplitudeAc51/Ah12, thus forming positive and negativ
chirality ground-state manifolds, respectively. The chi
Ising order parameter is then defined as

x~rW,t !5@f1x~rW,t !f2y~rW,t !2f1y~rW,t !f2x~rW,t !#/Ac
2, ~6!

where fa,i denotes thei th component of thefW a field. It
should be emphasized that this regime is meaningful only
N52 since forN.2 the above two chiral ground states a
connected by a global rotation with respect to the line pa
ing through the half angle between the two vector fiel
However, one can easily verify that this regime is in fa
equivalent to regime I by a simple linear transformation
the fields, i.e., by rotating one of the two fields byp/2.

We assume that the time evolution of the model is g
erned by the Langevin equation~model A dynamics@21#!
corresponding to the nonconserved order parameter, of
form

]fW a

]t
52

dH

dfW a

, a51,2 ~7!

where the thermal noise is ignored since we are conce
with only the zero temperature quench in the present wo
Equation~7! is numerically integrated in time using the Eul
method with the integration time stepDt50.1 and the dis-
crete lattice Laplacian with the mesh sizesDx5Dy51 is
used in Eq.~7!. Periodic boundary conditions in both lattic
directions are employed. Simulations were carried out
square lattices of linear sizeN5400. The final results are
obtained from averages over 20 to 30 different random ini
configurations. Main quantities of interest are as follows.

~i! Equal-time correlation function for theXY order pa-
rameter

CXY~r ,t !5
1

2N2 K (
i ,a51,2

fW a~ i ,t !•fW a~ i 1r ,t !L . ~8!

~ii ! Equal-time correlation function for the Ising order p
rameter

CI~r ,t !5
1

N2 K (
i

x~ i ,t !x~ i 1r ,t !L . ~9!

~iii ! Autocorrelation function for theXY order parameter
es
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AXY~ t !5
1

2N2 K (
i ,a51,2

fW a~ i ,0!•fW a~ i ,t !L . ~10!

~iv! Autocorrelation function for the Ising order paramet

AI~ t !5
1

N2 K (
i

x~ i ,0!x~ i ,t !L , ~11!

where^ & denotes the average over random initial configu
tions. In addition to these quantities, we also measured
total number of vorticesNV(t) corresponding tofW 1 andfW 2
at timet ~which is defined as usual in terms of the phases
fW 1 and fW 2 respectively!, and the excess energy relaxatio
DE(t)5^H&2E0 , E0 being the ground-state energy.

III. SIMULATION RESULTS AND DISCUSSIONS

To begin with, it appears instructive to look into the d
main growth morphology in terms of the distribution of poi
defects and Ising domain walls, which is shown in Fig.
We can clearly see that the vortices are pinned near Is
domain walls. This is intuitively appealing since near t
domain walls the fields tend to change rapidly and due to
change the generation of vortices is more probable~less
costly in energy! near the walls than anywhere else. In term
of domain growth, we therefore have an ordering syst
described by not a single length scale but multiple len
scales such as Ising domain size and the average separ
between vortices, etc., that can have, in general, differ
time dependence~i.e., power law exponents!. Hence the
question of dynamic scaling for our system with coupl
order parameters takes on a more complicated form, since
can ask about the scaling properties of not only the corr
tion functions of each order parameter itself but also
cross-correlation functions between the two order para
eters. From the viewpoint of structure of topological defec
this will turn into questions as to the density correlation
point defects, the density correlation of line defects, and a
the cross-correlation between point defects and line def
@22–25#. Here, in this work, however, we focus for simplic
ity on the correlation functions of Ising order parameter a
correlation functions ofXY order parameter only.

A. Regime I

We tried to collapse the correlation functions for bothXY
and Ising order parameters in terms of the respective len
scales LI(t) and LXY(t) which are defined asCI„r
5LI(t),t…51/2 andCXY„r 5LXY(t),t…51/2. We first discuss
the scaling in the growth ofXY order. As Figure 2 demon
strates, theXY correlation function satisfies a dynamic sca
ing of the formCXY(rW,t)5FXY„r /LXY(t)…. The length scales
LXY(t) shows a power law growthLXY(t);tfXY with the
growth exponentfXY.0.38 for late time stage (t>80),
which is clearly smaller than the growth exponent in the p
XY model @16–19#, as shown in Fig. 3. On the other han
the time dependence of the length scaleLI(t) ~Fig. 3! ex-
tracted from the Ising correlation function shows initial slo
~for t<80! of f I.0.35 and slowly approaches the value
f I(t).0.48, which is close to the curvature-driven expone
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1/2. Evidently, two different length scalesLI(t) andLXY(t)
are involved in the ordering dynamics of the present mo
in regime I.

Now, we have to face the question as to the mechan
for these two different length scales, especially for the slow
growth of XY order. One hint can be drawn from the mo
phological feature as mentioned above. That is, the dom
walls interact with the point vortices and make them pinn
near the walls. And this pinning impedes and slows down
motion of vortices, especially along the direction normal
the domain walls, which would result in a slower decay
the vortices. Since we expect the length scaleLXY(t) is
closely related to the average separation between vort
we can understand at least qualitatively thatLXY(t) grows
with smaller power exponent than in the case of the pureXY

FIG. 1. Snapshots of configurations at various times for Is
domains and O~2! spin vortices in regime I:~a! t510, ~b! t5160.
Shaded area represents Ising domains with positive sign~‘‘spin
up’’ !. Triangles and inverse triangles represent the two kinds
vortices corresponding tof1 andf2 fields, respectively, with posi-
tive ~filled! and negative~open! vorticities.
l

m
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model. Indeed, the time dependence of the vortex num
which is shown in Fig. 4, goes asNV(t);t20.76 at the late
time stage, giving the average separation between vort
LV(t)[1/ANV(t);t0.38, which is comparable to the growt
of the length scaleLXY(t). Also, when we tried to collapse
the XY correlation function with this length scaleLV(t) di-
rectly extracted from the number of vorticesNV(t), it yields
a good scaling collapse~see Fig. 5!. This seemingly plain
result is actually an interesting feature that can be contra
to the case of the pureXY model, where this method doe
not give a good scaling collapse due to different logarithm
corrections present in the two length scalesLV(t) and
LXY(t), as Blundell and Bray@17# explicitly demonstrated.
Screening effect of Ising domain walls on the long ran
interaction between vortices may be the main cause be

g

f

FIG. 2. Scaling collapse of the equal-time correlation functio
for the XY order parameter in regime I.

FIG. 3. Time dependence of the two length scales correspon
to XY and Ising order parameters in regime I. We obtainLXY(t)
;t0.38 andLI(t);t0.48 for late time region.
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this drastic reduction of the logarithmic correction in t
growth of XY order.

Now we turn to the scaling function for the Ising ord
parameter. As can be seen in Fig. 6, the quality of the sca
collapse for the Ising order parameter is rather poor, or
put it more precisely, the correlation functions in early tim
stages exhibit features with finite curvature near the orig
similar to the case of continuous vector order parameter
these correlation functions slowly approach the asympt
scaling form. This can be attributed to the softness of dom
walls from the continuum nature of the TDGL model; simil
features can also be seen in the case of the usual s
TDGL model.

FIG. 4. Time dependence of the total number of vortices p
antivortices. The solid line represents a power law with slo
20.76.

FIG. 5. Scaling collapse of the equal-time correlation functio
for the XY order parameter in regime I with the length scaleLV(t)
extracted from the time dependence of the total number of vort
~Fig. 4!. In contrast to the pure O~2! model, this yields a good
scaling collapse.
g
to

,
d

ic
in

lar

B. Regime II

Figure 7 shows the length scalesLXY(t) andLI(t), from
which we can extract an effective growth law ofLXY(t)
;LI(t);t0.38. Note also that from Fig. 8 the Ising correla
tion functions~similar to the case of regime I!, show very
slow approach to the asymptotic form. This can be co
trasted with theXY correlation function which exhibits a
relatively fast approach to its scaling limit, as shown in F
9. In particular, we find that the asymptotic limit of th
scaled correlation functions for the Ising order parame
does not show the usual short distance behavior ofFI(x)
;12Ax but exhibits a finite curvature near the origin (x
50) with resulting nontrivial Porod’s law ofFI(x);1
2Ax1.4. Unlike the case of regime I, this anomalous sh
distance behaviordoespersist over into the late time regime

s
e

s

s

FIG. 6. Scaling collapse of the equal-time correlation functio
for the Ising order parameter in regime I.

FIG. 7. Time dependence of the two length scales correspon
to XY and Ising order parameters in regime II. In contrast to regi
I, they show a comparable growth rateLXY(t).LI(t);t0.38.
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As an effort to understand these features, we may note
crucial difference in the symmetry properties of the Isi
order parameters in the two regimes. That is, in the cas
regime I, the Ising order parameter~due to its inner produc
form! is invariant under the simultaneous global rotation
both vectorsfW 1 andfW 2 , while in the case of regime II, the
Ising order parameter is invariant under a larger group
cluding independent global rotations of eitherfW 1 or fW 2 as
can be easily seen from the amplitude squared form of
definition of the Ising order parameter. Therefore, in the c
of regime I, the fieldsfW 1 andfW 2 do not have to reduce the
amplitudesufW 1u andufW 2u near domain walls. One of the tw
fields can simply be rotated byp across the domain wall
thereby making the Ising order parameterx5fW 1•fW 2 vanish
on the domain wall withufW 1u5ufW 2u51. In order for a point
vortex to be pinned near a domain wall of this type, t

FIG. 8. Scaling collapse of the equal-time correlation functio
for the Ising order parameter in regime II.

FIG. 9. Scaling collapse of the equal-time correlation functio
for the XY order parameter in regime II.
he

of

f
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e
e

vortex should be a ‘‘hard’’ vortex~vortex with small core
size! with larger chemical potential.

In contrast, in the case of regime II, across a domain w
the order parameter changes fromfW 1

251, fW 2
250 to fW 1

250,
fW 2

251. That is, within the interfacial region, both of the am
plitudesfW 1

2 andfW 2
2 should have values much smaller than

the equilibrium value. Therefore we can have many ‘‘sof
vortices~vortices with large core size! with relatively smaller
chemical potential near the domain wall region due
smaller amplitude values of the two fields near the interfa
region. It appears to be difficult to formulate an analy
argument for the effect of the pinning of the proliferatin
soft vortices on the domain wall dynamics. But, we can e
pect that these many soft vortices pinned near the dom
wall region would smear out the domain wall profiles, slo
ing down the growth of Ising domains. We can partly che
this expectation by measuring the number density of vorti
NV(t) or the length scaleLV(t);1/ANV(t). As shown in
Fig. 10, LV(t);t0.29, while LXY(t);t0.38. This means that
many soft vortices are pinned near the domain walls a
these vortices do not decay away as quickly as in the cas
regime I. This, in turn, implies that the width of Ising doma
walls would be very slow in approaching its equilibriu
value. The above argument, at least, gives us a qualita
understanding as to why the Ising length scaleLI(t) grows
so slowly and why the scaled correlation function a
proaches a seemingly non-Ising scaling form with an anom
lous effective Porod law exponent.

In the absence of a microscopic theory for the grow
laws, we tried to find some relationships between vario
exponents, that can be checked from the simulation res
One relation we can start with is Porod’s law and the ex
nents for the excess energy relaxation. As shown by B
and Rutenberg@26#, Porod’s law, i.e., the short distance b
havior of the scaling function, determines the long-time b
havior of the excess energy relaxation, which is shown
Fig. 11. Now, assuming the dominance of the Ising len
scale, Bray argument givesDE(t);LI(t)

2c, wherec is the

s

s

FIG. 10. Time dependence of the two length scalesLXY(t) and
LV(t) in regime II: they do not have the same power law growth,
contrast to the case of regime I.
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exponent appearing in the short distance behavior of the s
ing function of Ising order parameter. If we set the ener
relaxation in time asDE;t2g, then we see thatDE(t)
;t2g;LI(t)

2g/f I where f I is the Ising growth exponent
Therefore we get the relationg5cf I , which can be
checked using simulation results. First consider the cas
regime I where we haveg.0.52, f I.0.48, andc'1.1,
which closely satisfies the above relation. Next, in the c
of regime II, we haveg.0.52, f I.0.38, and c'1.4,
which, again, are seen to be consistent with the above sca
relation.

Lastly, we present the behavior of autocorrelation fun
tions for the Ising andXY order parameters. As Fig. 12 dem
onstrates, theXY autocorrelation exhibits a stretched exp
nential behaviorAXY(t);exp(2ctb) with the values ofb

FIG. 11. Relaxation of the excess energy for regimes I and II
both regimes, they show a power law decayDE(t);t2g with g
.0.52.

FIG. 12. Relaxation of the autocorrelation function for theXY
order parameter: it can be well fitted by a stretched exponen
relaxation of the formAXY(t);exp(2ctb) with b.0.20.
al-
y

of

e

ng

-

.0.20 for both regimes. As seen in Fig. 1, the snapshot
growth morphology, the vortices are rarely located well
side Ising domains due to their pinning near the Ising wa
and hence the dominant disorder within an Ising domain
the spin wave excitation. Therefore we can conjecture t
the long-time behavior of the autocorrelation function for t
XY order parameter is governed by these spin wave exc
tions, which will give rise to a stretched exponential beha
ior, just as in the case of theXY model in one dimension. It
is worth mentioning that the recent numerical simulatio
carried out by Leeet al. @27# on the phase ordering in
coupled XY-Ising model @15,28# also show a similar
stretched exponential relaxation for theXY autocorrelation
function. Ising order parameter autocorrelation shows
power law relaxation withAI(t);t2l with l'0.6, as shown
in Fig. 13. But the statistics of the data is not good enough
determine whether the power law exponent is the same as
known exact value for the pure Ising casel55/8 @29# or not.

To summarize the above results on the phase orderin
the TDGL model with O(2)3Z2 degeneracy in regimes
and II, we can compare these results with those of rela
model systems possessing the same ground-state degen
We first note that even though the present TDGL model w
derived from the FFXY model as an effective free energy
a finite temperature, the growth law features and morpho
gies of the domain growth in the present TDGL model do n
show any similarity to those of the FFXY model. Rather,
another variant system, which is called a coupledXY-Ising
model @15,28#, at finite temperature exhibits ordering kine
ics quite close to the present TDGL systems in regime I@27#.
In particular, for a wide range of intermediate temperatur
the growth exponent forXY order in this coupledXY-Ising
model becomesfXY.0.36;0.39, while the growth expo-
nent for the Ising order showsf I.0.45– 0.5, which are
close to those exponents of the TDGL model in regime
One caveat, however, is that in the case of the coupledXY-
Ising model at finite temperature, theXY ordering is the time

n

al

FIG. 13. The autocorrelation function for the Ising order para
eter. We can see that the statistics is not as good as in the ca
spin autocorrelation function~Fig. 12!. The solid line represents a
power law with slope25/8.
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evolution toward a quasi-long-range order, where a criti
dynamic scaling~rather than simple dynamic scaling! is sat-
isfied for theXY correlation function. As shown above, th
stretched exponential behavior of theXY autocorrelation
function in the present TDGL model is also appearing in
coupledXY Ising model in contrast to the case of the FFXY
model in two dimensions.

This may be understood in terms of the characteristics
point defects in each of those model systems. That is, in
case of the FFXY model, point defects are inevitably assoc
ated with corners of Ising~chirality! domain walls and these
corner vortices interact with one another logarithmically. O
the other hand, in the case of the coupledXY-Ising model or
the present continuum TDGL model, point vortices do n
have to reside on the corners of the Ising domain walls, e
though it is relatively easier for the point vortices to
pinned on the corners of Ising domain walls. As for t
TDGL model in regime II, we have not been able to find
related model system with analogous ordering characte
tics.

IV. SUMMARY

In this work we presented simulation results on the ord
ing dynamics of the O(2)3Z2 TDGL model in two dimen-
sions. We find that there exist two regimes of the model w
distinct growth kinetics where, in regime I, theXY order
exhibits a slower growth than that of the Ising order, wh
.
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h

on the other hand, in the case of regime II, the two or
parameters grow with length scales of the same effec
growth exponent. Different symmetry nature of the Ising o
der parameter in the two regimes seems to cause dis
properties of mutual pinning between the vortices and
main walls, which in turn is expected to give rise to no
trivial growth characteristics. Unusual stretched exponen
behavior is observed throughout the parameter space~both
regime I and regime II! for the XY autocorrelation function,
while a power law behavior is shown by Ising autocorre
tion functions. In this work we considered only the se
correlation functions of Ising andXY order parameters. Bu
it is expected that the mutual correlation function~appropri-
ately defined! would give further information about the sca
ing properties of the growth kinetics of the model syste
with mixed ground-state degeneracies. Analytic treatmen
the system~e.g., using Gaussian auxiliary field methods@3–
5#! would be very welcome.
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José, ibid. 49, 9567~1994!, and references therein.
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