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We investigate numerically the ordering dynamics of a time-dependent Ginzburg-L@Fd&l) model in
two dimensions, which possesses a ground-state manifold with>XG{2 flegeneracy. The ordering process of
the system is described in terms of annihilation of both point defgotsices and line defectédomain wall3,
together with the mutual pinning between the two kinds of defects. There exist two regegases | and )
of parameter space with different growth kinetics. In regime |, Ising order shows a power law growth with
exponent¢, =0.48, butXY order grows with smaller exponent afyy=0.38, while in regime Il both Ising
andXY order exhibit an effective growth exponent@éf~ ¢xv=0.38. In regime Il, the system exhibits a very
slow approach to the asymptotic scaling regime. This distinction between the two regimes is attributed to the
different nature of the symmetry of the Ising order param¢®&1063-651X97)07811-7

PACS numbg(s): 64.60.Cn, 64.60.Ht, 64.60.My, 82.20.Mj

[. INTRODUCTION temperature-dependent ordering, a characteristic low tem-
erature chiral domain morphology with faceted walls, and a
ite temperature roughening transition separating the two
ferent kinds of domain growth morpholody3].

There has been a long history of research activity on th(ﬁ
phase ordering processes for statistical systems quenchgﬁ

from disordered phase to a low temperature ordered phase In the present work, we investigate the ordering kinetics

[1]. IF is now _falrly well estabI!shed that the.equal-tllme €O~ 't a continuum time-dependent Ginzburg-Landa@DGL)
relation functions at the late time stage exhibit scaling prop-

erties with typical size of the ordered regions growing as amodel, in two dimensions with (292, degeneracy, which

e Is closely related to the BEY model on a square lattice. The
power law in time, and that the growth law and the scaling . :
. : > . aim of the present work is to understand the effect of coex-
functions depend on the dimensionality of the system, num: : .
istence of both continuous and discrete broken symmetry
ber of the order parameter components, and the conserved Parnd interaction between the corresponding defect strugtures
nonconserved nature of the order paramg2é¢rFor systems P 9

with O(N) symmetry, when the dimensionality of the systemon the ordering kinetics of the systems governed by the con-

is not less than the number of components of the order patlnuum TDGL models. The Ginzburg-Landau Hamiltonian

rameterN, stable topological defect structures such as dosan be derived from the P& model in two dimensions

. ) . through a Hubbard-Stratonovich transformation as the effec-
main walls, vortices, strings, and monopoles are generated

and the ordering dynamics of the system is known to betlve free energy of the system at finite temperaiird]. It

gan also be constructed in terms of two planar vector fields
closely related to the decay process of these defects WhICb symmetry argumentELS]. It is shown below that, de-
act as disordering agen{t3—7]. y sy y arg : ;

Most of the research in this area has focused on syste Sendmg on the values of the coupling constants, there exist

. . : . Wwo characteristic regimgsegime | and regime JIwith dif-
with a single kind of topological defect structure, and theferent growth kinetics. This is due to the existence of two

phase ordering kinetics in systems in which two or moretypes of Ising order parameters possible for the model. In

types of topological defects coexist and interact with eacho ine | the Ising order parameter can be identified as the
other was almost never explored. The two-dimensional Joj e product of the two planar vectors, while in regime I,
sephson junction array under a transverse magnetic[B8d ¢ |sing order parameter corresponds to the difference be-
discotic liquid crystal$9], and helimagnetic compounfis)]  tween the squared amplitude of the two planar vector fields.
provide some physical examples of such systems. The main results of the present work are summarized as
Recently, the present authof&1] have performed nu- follows. The most important feature of the growth kinetics of
merical simulations on the ordering dynamics of the fully the continuum TDGL model with O(2J Z, broken symme-
frustratedXY (FFXY) model on a square lattigd 2] which  try is that, for both regime | and regime II, the vortices are
possesses both continuou&Pand discret&, degeneracies pinned near the Ising domain walls. This mutual pinning
in its ground-state manifold. This model is known to de-between vortices and domain walls is expected to influence
scribe the equilibrium properties of Josephson junction arthe dynamic decay rate of the number of defects themselves,
rays in two dimensions with half magnetic flux quantum perthus giving rise to nontrivial domain growth laws. Espe-
unit plaquettd 8]. This work indicated that the ordering dy- cially, the screening of vortex fields due to the domain walls
namics of the model quenched from infinite temperature to appears to influence the equal-time correlation functions of
low temperature exhibits a rich variety of behaviors such aghe XY and Ising order parameters and their scaling func-
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tions in an interesting way. In the case of regime |, Isingconfigurations, it is enough to consider the spatially constant
order grows with approximate domain length scaleLef solution that satisfies the extremum condition for the poten-
~t% with ¢,=0.48 which is quite close to the domain tial term, i.e.,

growth in the scalar TDGL model with nonconserved order

parameter. However, the length scale corresponding Yo oV o 10 5
order grows in time as a power law withy(t) ~t?xy, 5d, |- - —Yoam4 2
where ¢xy=0.38, which is distinctly smaller than the pure “1¢=bmin

XY growth exponent reported from various numerical simu-
lations[16—-19. where

On the other hand, in the case of regime II, the Ising and 1 9 h
XY order grow with nearly the same growth law lo§y(t) V= Z(<35§+ da—1)%+ (31 $2)%+ > Hid5. (3
~L,(t)~1%%8 This growth exponent, however, should be
considered as only an effective growth exponent, because

" icts 2 tend felow | in th h It can be shown from Eq$2) and(3) that there exist, in
ere exists a tendency of slow increéase in the grow exIOOQeneral, two different regimes in thg,h) plane. These two

nent with timg. One int_eresting fgature in regime 1l is that theregimes are characterized by different ground-state configu-
Ising correlat_|oq fqnctlon ex.h|b|ts a very SIOV‘.’ approaf:h O ations and correspondingly by different definition of Ising
the asympt"“‘? limit. We attrlbu'ge this to Fhe high density of order parameters. The underlying reason for the existence of
soft vortices pinned near the Ising domain walls. These vorg, , gjgterent Ising order parameters lies in the full symmetry
tices W'”.be smearnng th? domain walls, makl_ng I Q.'ff'f:u't structure of the Hamiltoniah. Namely, the Hamiltoniail)

for the width of the domain walls to reach their equilibrium is invariant undefi) a global(simultaneousrotation of two

size. Hence, wibin o simulaton e inon, 1 SEC vector flds[O(Y)], (1) the exchange of he two flcs
9 g 9 (Z3), and (iii) the sign changé rotation of one of the

F(x)=1—Ax¥ with xy=1.4 near the origin, apparently vio- b : -
lating Porod’s law for the Ising ordé2]. Time dependence f|e!ds (2), Wher(_a the superscrlpa;.andb serve to d'Stm'.
r]gwsh the two discret&Z, symmetries. Hence the Hamil-

of the vortex density and energy relaxation behavior are co ; e b )
sistent with this picture of a broad Ising domain wall, very tonian has Q) xZ;XZ; symmetry. Among this full sym-

slowly approaching its equilibrium width as the ordering Metry of the Hamiltonian, only Q{)xZ, subsymmetry is

proceeds. broken in the ground state and depending on which one of
As for the autocorrelation function for théY order pa- the twoZ, symmetries(Z3 or Z9) is broken, two types of

rameter, for both regimes, it exhibits a stretched exponentidsing order parameters are allowed. The two regimes are de-

behavior ofAxy(t)~exp(—ct?) with ~0.2. This peculiar scribed in order.

behavior is reminiscent of théY autocorrelation function in Regime I: For—2<g+h<0 andg<0, the ground-state

the one-dimensiondlLD) O(2) model[20], though with dif-  configuration is obtained when the two fields and ¢,

ferent values of the3 exponent[3=1/2 in the 1D @2) become parallel or antiparallel with the same amplitéde

model. =1/Jg+h+2, which yields the ground-state enerdy,
This paper is organized as follows. In Sec. Il we present=(g+h)/[4(g+h+2)]. Therefore the proper Ising order

the Hamiltonian of the model, the symmetry, the ground-parameter in this regime can be defined as

state configurations, and the associated Langevin dynamic R - R )

equation. Section Il explains the results of numerical simu- X(FO=[@1(F,1)- §o(F,H) JIA%, (4)

lations. Section IV summarizes the main results of theNote that the two degenerat@arallel and antiparallgl
present work.

ground-state manifolds can never be reached from each other
by a global rotation of the two fields simultaneously. Within

[l. TDGL MODELS WITH O (N) xZ; GROUND-STATE one vacuum manifold, a global rotation of an arbitrary angle
DEGENERACY of the two fields generates another ground-state configura-

We begin with a Ginzburg-Landau Hamiltonian based ontion’ representing Q) degeneracy of the system. In addi-

tion, changing the sign of one of the two fields transforms
two N-component real vectord; and ¢, of the form ' . X . .
P $1and$, one ground-state manifold into the other manifold with op-
H= J ddr

1 1 posite Ising order parameter value. An arbitrary ground-state
5[(€$1)2+(€$2)2]+ Z(¢§+ 2—1)2 configuration is thus a symmetry broken state for both of
these continuous and discrete symmetries, namely\)O(
g h X Z5 symmetry.
+5(31 Br)%+ > Had3|. 1) Regime II: Forg>0 andh>0 the ground-state configu-
rations are given by either one of the fields becoming a unit
vector and the other field zero. That is, the relative amplitude

This Hamiltonian withN= 2 was derived by Choi and Doni- ; .
. . of the two vectors determines the Ising order parameter of
ach[14] through a Hubbard-Stratonovich transformation andthe model. which is defined as 9 P

by Yosefin and Domanj15] through a symmetry argument,

ip connection w@th effqrts to understand the cr.iticallproper— X(F)=[B1(F.0) 12— [ do(F,1)]% (5)
ties of the two-dimensional BEY model. Let us first discuss

the symmetry of the above Hamiltonian and the lowest enAgain, in this regime, there exist two disconnected $bys
ergy configurations. In order to obtain the minimum energyglobal rotations of the fieldsof ground-state manifolds,
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which is connected by exchange of the two fiefbisand ¢, 1 _ _
(Z3). Therefore, as in regime |, the ground state possesses Axv(D =552 < 212 $a(|-0)'$a(l.t)>- (10)
O(N) x Z§ degeneracies. But note that the nature of the dis- e
creteZ, symmetry for the two regimes is different: For re-
gime 1, this symmetry corresponds to changing the sign of
one of the two fields whereas for regime Il, it corresponds to 1
exchange of two fields. _ ; ;

For the special case &= 2, which we will be focusing A=z <Z x(1LOX( 't)>’ an
on in this work, in addition to the above two regimes, there
appears an apparently new regime fo2<<h<0 andg>0 where( ) denotes the average over random initial configura-
where the two disconnected sets of ground-state configurdaions. In addition to these quantities, we also measured the
tions correspond to the perpendicular alignment of the twdotal number of vorticedN,/(t) corresponding tap; and ¢,
vector fields(clockwise or counterclockwigewith the same  at timet (which is defined as usual in terms of the phases of
amplitudeA.=1/1/h+2, thus forming positive and negative ¢, and &, respectively, and the excess energy relaxation
chirality ground-state manifolds, respectively. The chiralAE(t)=(H)—Eq, E, being the ground-state energy.
Ising order parameter is then defined as

(iv) Autocorrelation function for the Ising order parameter

R R R R R 5 IIl. SIMULATION RESULTS AND DISCUSSIONS
X(F 0 =[1x(F,1) oy (7,1) — b1y (T, 1) (P, 1) /AL, (6)

To begin with, it appears instructive to look into the do-
main growth morphology in terms of the distribution of point

should be emphasized that this regime is meaningful only fofiéfects and Ising domain walls, which is shown in Fig. 1.
We can clearly see that the vortices are pinned near Ising

N=2 since forN>2 the above two chiral ground states are ; Co e : .
domain walls. This is intuitively appealing since near the

connected by a global rotation with respect to the line pass

ing through the half angle between the two vector fields domain walls the fields tend to change rapidly and due to this

However, one can easily verify that this regime is in factch@nge the generation of vortices is more probaliss

equivalent to regime | by a simple linear transformation of¢0Stly in energynear the walls than anywhere else. In terms

the fields, i.e., by rotating one of the two fields by2. of domain growth, we therefore have an ordering system
We assume that the time evolution of the model is gov_descrlbed by not a single length scale but multiple length

erned by the Langevin equatidmodel A dynamicg21]) scales such as Ising domain size and the average separation

corresponding to the nonconserved order parameter, of tHEFtWeen vortices, etc,, that can have, in general, different
form time dependencdi.e., power law exponents Hence the

question of dynamic scaling for our system with coupled
order parameters takes on a more complicated form, since we
can ask about the scaling properties of not only the correla-
tion functions of each order parameter itself but also the
cross-correlation functions between the two order param-
e%fers. From the viewpoint of structure of topological defects,
K

where ¢, ; denotes thdth component of thep, field. It

Ib,  OH
at 5b,

a=1,2 (7)

where the thermal noise is ignored since we are concern
with only the zero temperature quench in the present wor
Equation(7) is numerically integrated in time using the Euler
method with the integration time stejt=0.1 and the dis-
crete lattice Laplacian with the mesh sizAg=Ay=1 is
used in Eq(7). Periodic boundary conditions in both lattice
directions are employed. Simulations were carried out o
square lattices of linear siZd=400. The final results are
obtained from averages over 20 to 30 different random initial A. Regime |
configurations. Main quantities of interest are as follows.

(i) Equal-time correlation function for thXY order pa-
rameter

is will turn into questions as to the density correlation of
point defects, the density correlation of line defects, and also
the cross-correlation between point defects and line defects
[22-25. Here, in this work, however, we focus for simplic-
ity on the correlation functions of Ising order parameter and
I,1:orrelation functions oKY order parameter only.

We tried to collapse the correlation functions for bathf
and Ising order parameters in terms of the respective length
scales L,(t) and Lyy(t) which are defined asC,(r
=L,(1),t)=1/2 andCyy(r =Lxy(t),t)=1/2. We first discuss
the scaling in the growth oXY order. As Figure 2 demon-
strates, theXY correlation function satisfies a dynamic scal-
ing of the formCyy(F,t) =Fxy(r/Lxy(t)). The length scales
(i) Equal-time correlation function for the Ising order pa- Lxv(t) shows a power law grOthXY_(t)”t¢XY with the
rameter growth exponent¢yy=0.38 for late time staget£&80),
which is clearly smaller than the growth exponent in the pure
1 XY model[16-19, as shown in Fig. 3. On the other hand,
Ci(rt)=— <2 X(i,t)x(i+r,t)>. (9) the time dependence of the length schl¢t) (Fig. 3) ex-
N [ tracted from the Ising correlation function shows initial slope
(for t=<80) of ¢,=0.35 and slowly approaches the value of
(iii) Autocorrelation function for theXY order parameter ¢,(t)=0.48, which is close to the curvature-driven exponent

1 . .
CXY(r,t):mz<i;12$a(|,t>.$a(l+r’t)>. (8)
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FIG. 2. Scaling collapse of the equal-time correlation functions
for the XY order parameter in regime I.

model. Indeed, the time dependence of the vortex number,
which is shown in Fig. 4, goes a$,(t)~t~%’¢ at the late
time stage, giving the average separation between vortices

FIG. 1. Snapshots of configurations at various times for Ising
domains and @) spin vortices in regime I(a) t=10, (b) t=160.
Shaded area represents Ising domains with positive gigpin
up”). Triangles and inverse triangles represent the two kinds of
vortices corresponding t@, and ¢, fields, respectively, with posi-
tive (filled) and negativéopen) vorticities.

1/2. Evidently, two different length scalés(t) andLyy(t)
are involved in the ordering dynamics of the present model
in regime |.

Now, we have to face the question as to the mechanism
for these two different length scales, especially for the slower
growth of XY order. One hint can be drawn from the mor-
phological feature as mentioned above. That is, the domain
walls interact with the point vortices and make them pinned
near the walls. And this pinning impedes and slows down the
motion of vortices, especially along the direction normal to
the domain walls, which would result in a slower decay of
the vortices. Since we expect the length schlg/(t) is

Ly(t)=1/J/Ny(t) ~t%8 which is comparable to the growth

of the length scald yy(t). Also, when we tried to collapse
the XY correlation function with this length scalg,(t) di-
rectly extracted from the number of vorticBig(t), it yields

a good scaling collapsésee Fig. 3. This seemingly plain
result is actually an interesting feature that can be contrasted
to the case of the purkY model, where this method does
not give a good scaling collapse due to different logarithmic
corrections present in the two length scaleg(t) and
Lyy(t), as Blundell and Bray17] explicitly demonstrated.
Screening effect of Ising domain walls on the long range
interaction between vortices may be the main cause behind

2.0 —
- o~ XY Regime |
| - o- IsING o |
7
7
o .©
v
2 15 .0 i
>- /g/
) ¢
e 4 -
~ 4
2 o
1.0 ]
3 e
%0 /O’//
i o’//D’ i
o
05 T T+ 1T v T * 1
1.0 15 20 25 3.0 3.5
log(t)

closely related to the average separation between vortices, F|G. 3. Time dependence of the two length scales corresponding

we can understand at least qualitatively that(t) grows
with smaller power exponent than in the case of the plire

to XY and Ising order parameters in regime |I. We obtajn(t)
~1938 andL,(t) ~t°*for late time region.
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FIG. 4. Time dependence of the total number of vortices plus FIG. 6. Scaling collapse of the equal-time correlation functions
antivortices. The solid line represents a power law with slopefor the Ising order parameter in regime |.
—0.76.

. . . . . . . B. Regime |
this drastic reduction of the logarithmic correction in the

growth of XY order. Figure 7 shows the length scalegy(t) andL,(t), from
Now we turn to the scaling function for the Ising order Which we can extract an effective growth law bik(t)
parameter. As can be seen in Fig. 6, the quality of the scaling” Li(t)~t""" Note also that from Fig. 8 the Ising correla-
collapse for the Ising order parameter is rather poor, or, tdlon functions(similar to the case of regime,Ishow very
put it more precisely, the correlation functions in early timeSlow approach to the asymptotic form. This can be con-
stages exhibit features with finite curvature near the origintrasted with theXY correlation function which exhibits a
similar to the case of continuous vector order parameter antglatively fast approach to its scaling limit, as shown in Fig.
these correlation functions slowly approach the asymptoti®- In particular, we find that the asymptotic limit of the
scaling form. This can be attributed to the softness of domaigcaled correlation functions for the Ising order parameter
walls from the continuum nature of the TDGL model; similar does not show the usual short distance behavioF ¢k)
features can also be seen in the case of the usual scalarl —AXx but exhibits a finite curvature near the origir (

TDGL model. =0) with resulting nontrivial Porod's law of~(x)~1
—Ax*4 Unlike the case of regime |, this anomalous short
1.0 ~e— T . T . . . distance behavialloespersist over into the late time regime.
Regime | —s0
20 T T T T T T T 1
0.8 4 .
—_0-- XY Regime 11
--o-- ISING 1
,0
~ - -
2 0.6 o
= _ 1.5 - -
Fet 4 ~~ o~
> = e .a
Q o o -7
0.4 1 ._§< L .o
0 - o’
1 L Lo o’
0.2 ~ 107 o o 1
N Reg o’
=) { o o’
on -
0.0 2 .-H
o
. : : i : : 0.5 -
0 2 4 6 8

“v0 o 15 20 25 30 35
FIG. 5. Scaling collapse of the equal-time correlation functions log(t)
for the XY order parameter in regime | with the length schigt)
extracted from the time dependence of the total number of vortices FIG. 7. Time dependence of the two length scales corresponding
(Fig. 4). In contrast to the pure @) model, this yields a good to XY and Ising order parameters in regime Il. In contrast to regime
scaling collapse. I, they show a comparable growth ratgy(t)=L,(t)~t°%
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FIG. 8. Scaling collapse of the equal-time correlation functions
for the Ising order parameter in regime |II.

FIG. 10. Time dependence of the two length scalgg(t) and
Ly(t) in regime II: they do not have the same power law growth, in
contrast to the case of regime I.

A.S an .effort to understand these featuresz we may not(_e t'\‘?ortex should be a “hard” vortexvortex with small core
crucial difference in the symmetry properties of the Ismg§ize with larger chemical potential

order parameters in the two regimes. Thatis, in the case o In contrast, in the case of regime Il, across a domain wall

regime |, the Ising order paramet@tue to its inner product the order parameter changes fraf=1, 32=0 to $2=0
form) is invariant under the simultaneous global rotation of 5 Pal o 9 _ v 1=
both vectorsd, and &,, while in the case of regime Il the <}5_2=1. Th2at is, Wzlthln the interfacial region, both of the am-
Ising order parameter is invariant under a larger group inpl'tUdeS_‘?l gnd ¢ should have values much smaller than 1
cluding independent global rotations of eithéf or @, as the _eqwhbngm val_ue. Therefore we can ha\_/e many ‘“‘soft
can be easily seen from the amplitude squared form of thgortlc_es(vomces Wlth large core S|2evv_|th relatlvely smaller
definition of the Ising order parameter. Therefore, in the cas€emical potential near the domain wall region due to
of regime I, the fieldsh, and &, do not have to reduce their smaller amplitude values of the two fields near the interface
amplitudes &,| and|@,| near domain walls. One of the two "€9ioN- It appears to be dlfflcult_ to formulate an_analytlc
fields can simply be rotated by across the domain wall, argument for the effect of the pinning of the proliferating

thereby making the Ising order parameter &, - &, vanish soft vortices on the domain wall dynamics. But, we can ex-
on the domain wall with @|=|&,|= 1. In order for a point pect that these many soft vortices pinned near the domain

vortex to be pinned near a domain wall of this type thewa” region would smear out the domain wall profiles, slow-

Cyy(r,t)

1.0

0.8

0.6 1

0.4 1

0.2 1

0.0+

T

Regime II

=80

=160 |

=320
=640
=1280

t=2560 |

T
2

/Ly (t)

ing down the growth of Ising domains. We can partly check
this expectation by measuring the number density of vortices
Ny(t) or the length scald (t)~1/\/Ny(t). As shown in
Fig. 10, Ly(t)~t%% while Lyy(t)~t%%8 This means that
many soft vortices are pinned near the domain walls and
these vortices do not decay away as quickly as in the case of
regime |. This, in turn, implies that the width of Ising domain
walls would be very slow in approaching its equilibrium
value. The above argument, at least, gives us a qualitative
understanding as to why the Ising length sdajé) grows

so slowly and why the scaled correlation function ap-
proaches a seemingly non-Ising scaling form with an anoma-
lous effective Porod law exponent.

In the absence of a microscopic theory for the growth
laws, we tried to find some relationships between various
exponents, that can be checked from the simulation results.
One relation we can start with is Porod’s law and the expo-
nents for the excess energy relaxation. As shown by Bray
and Rutenbergj26], Porod’s law, i.e., the short distance be-
havior of the scaling function, determines the long-time be-
havior of the excess energy relaxation, which is shown in

FIG. 9. Scaling collapse of the equal-time correlation functionsFig. 11. Now, assuming the dominance of the Ising length

for the XY order parameter in regime Il

scale, Bray argument givesE(t)~L,(t) "%, wherey is the
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FIG. 11. Relaxation of the excess energy for regimes | and Il. In
both regimes, they show a power law decdaf(t)~t~” with y

=0.52.
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log(t)
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FIG. 13. The autocorrelation function for the Ising order param-
eter. We can see that the statistics is not as good as in the case of
spin autocorrelation functiofFig. 12. The solid line represents a
power law with slope—5/8.

exponent appearing in the short distance behavior of the scal-

ing function of Ising order parameter. If we set the energy~0.20 for both regimes. As seen in Fig. 1, the snapshots of
relaxation in time asAE~t~7”, then we see thaAE(t)  growth morphology, the vortices are rarely located well in-
~t~7~L(t)" "% where ¢, is the Ising growth exponent. side Ising domains due to their pinning near the Ising walls
Therefore we get the relatiory= ¢, which can be and hence the dominant disorder within an Ising domain is
checked using simulation results. First consider the case qhe spin wave excitation. Therefore we can conjecture that
regime | where we have/=0.52, ¢,=0.48, andy~1.1,  the long-time behavior of the autocorrelation function for the
which closely satisfies the above relation. Next, in the casiy order parameter is governed by these spin wave excita-
of regime I, we havey=0.52, ¢#,=0.38, and#~1.4, tions, which will give rise to a stretched exponential behav-
which, again, are seen to be consistent with the above scalingr, just as in the case of théY model in one dimension. It
relation. is worth mentioning that the recent numerical simulations
Lastly, we present the behavior of autocorrelation func-carried out by Leeet al. [27] on the phase ordering in a
tions for the Ising an&'Y order parameters. As Fig. 12 dem- coupled XY-Ising model [15,28 also show a similar
onstrates, thX'Y autocorrelation exhibits a stretched expo- stretched exponential relaxation for te¥ autocorrelation
nential behaviorAyy(t) ~exp(-ct’) with the values of8  function. Ising order parameter autocorrelation shows a
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FIG. 12. Relaxation of the autocorrelation function for k¥
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power law relaxation with#\ (t) ~t~* with A\~0.6, as shown

in Fig. 13. But the statistics of the data is not good enough to
determine whether the power law exponent is the same as the
known exact value for the pure Ising case 5/8[29] or not.

To summarize the above results on the phase ordering of
the TDGL model with O(2XZ, degeneracy in regimes |
and Il, we can compare these results with those of related
model systems possessing the same ground-state degeneracy.
We first note that even though the present TDGL model was
derived from the FKY model as an effective free energy at
a finite temperature, the growth law features and morpholo-
gies of the domain growth in the present TDGL model do not
show any similarity to those of the KFY model. Rather,
another variant system, which is called a coupkd-Ising
model[15,28, at finite temperature exhibits ordering kinet-
ics quite close to the present TDGL systems in regif&7].

In particular, for a wide range of intermediate temperatures,
the growth exponent foKY order in this coupleX Y-Ising
model becomespyy=0.36~0.39, while the growth expo-
nent for the Ising order showsg,=0.45—-0.5, which are
close to those exponents of the TDGL model in regime |.

order parameter: it can be well fitted by a stretched exponentiaDne caveat, however, is that in the case of the cougi¢d

relaxation of the formAy.(t) ~exp(—ct®) with 8=0.20.

Ising model at finite temperature, teY ordering is the time
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evolution toward a quasi-long-range order, where a criticabn the other hand, in the case of regime Il, the two order

dynamic scalingrather than simple dynamic scalinig sat-

parameters grow with length scales of the same effective

isfied for theXY correlation function. As shown above, the growth exponent. Different symmetry nature of the Ising or-

stretched exponential behavior of tR€Y autocorrelation

der parameter in the two regimes seems to cause distinct

function in the present TDGL model is also appearing in theproperties of mutual pinning between the vortices and do-

coupledXY Ising model in contrast to the case of the XI¥
model in two dimensions.

main walls, which in turn is expected to give rise to non-

trivial growth characteristics. Unusual stretched exponential

This may be understood in terms of the characteristics obehavior is observed throughout the parameter sgacth
point defects in each of those model systems. That is, in theegime | and regime }Ifor the XY autocorrelation function,
case of the FRY model, point defects are inevitably associ- while a power law behavior is shown by Ising autocorrela-
ated with corners of Isingchirality) domain walls and these tion functions. In this work we considered only the self-
corner vortices interact with one another logarithmically. Oncorrelation functions of Ising andY order parameters. But

the other hand, in the case of the coup¥d-Ising model or

it is expected that the mutual correlation functi@ppropri-

the present continuum TDGL model, point vortices do notately definetlwould give further information about the scal-
have to reside on the corners of the Ising domain walls, eveing properties of the growth kinetics of the model system
though it is relatively easier for the point vortices to be with mixed ground-state degeneracies. Analytic treatment of
pinned on the corners of Ising domain walls. As for thethe systeme.g., using Gaussian auxiliary field methd8s-
TDGL model in regime Il, we have not been able to find a5]) would be very welcome.

related model system with analogous ordering characteris-

tics.

IV. SUMMARY
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